RESTITUTION OF PSEUDORHOMBILA XANTHIFORMIS GARTH, 1940, FOR NANOPLAX GARTHI GUINOT, 1969 (DECAPODA, GONEPLACIDAE)

PAR

MICHEL E. HENDRICKX
Estacion Mazatlan UNAM, Apdo. Postal 811, Mazatlan, 82000 Sinaloa, Mexico

ABSTRACT

The recent collection of two females and one male of Pseudorhombila xanthiformis Garth, 1940, in the Gulf of California, permits to complete the definition of this species previously known from female specimens only. P. xanthiformis was transferred to the genus Nanooplax Guinot, 1969, as N. garthi Guinot, 1969, nom. nov. A close examination of the sternum-abdomen organization and of the sexual pleopods of the male, and the comparison of this fresh material of P. xanthiformis, with P. quadridentata (Latreille, 1828), P. octodentata Rathbun, 1906, and P. guinoti Hernandez-Aguilera, 1982 on the one hand, and on the other hand with Nanooplax xanthiformis (A. Milne Edwards, 1880), the type-species of Nanooplax, lead us to the conclusion that Garth's species should be maintained in the genus Pseudorhombila A. Milne Edwards.

RÉSUMÉ

INTRODUCTION

L'existence d'un nombre très élevé de "formes xanthiennes" a rendu extrêmement complexe la systématique des Xanthidae. Selon Guinot (1967), ceci est dû essentiellement à l'existence, au sein de ce groupe, d'énormes variations de taille des caractères morphologiques importants (i.e., ceux qui indiquent des relations phylogénétiques fondamentales) et de nombreux caractères plastiques trouvant leur origine au niveau de mécanismes adaptatifs (i.e., sans importance phylogénétique réelle). L'absence d'une hiérarchisation valable des caractères morphologiques au sein des Xanthidae aurait donc conduit, selon les cas, à des groupements ou à des divisions peu profondes car tenant compte de manifestations phénotypiques fragiles sur le plan génétique.
C'est à partir de 1967, dans le cadre de recherches préliminaires sur les groupements naturels chez les Crustacés Décapodes Brachyptères, que Guinot entreprit la révision de certains genres de Xanthidae sensu Balss, 1957 (voir: Guinot, 1970) et qu'elle s'intéresse longuement au difficile problème posé par la position taxonomique des nombreuses espèces du genre Micropanope Stimpson, 1871 (Guinot, 1967). Comme le souligne d'emblée Guinot (1967: 348), l'examen de nombreuses espèces rattachées à ce genre permet de conclure rapidement "... qu'elles ne constituent non pas un genre unique mais plusieurs petits groupes génériques distincts ...". En fait, au cours de son étude, Guinot est amenée à redéfinir le genre Micropanope, en lui retirant de nombreuses espèces qu'elle place dans des genres nouveaux (Conopanope, Coralliope, Nanocassiope, Microcassiope, Nanoplax et Monodactylus). Les caractères auxquels Guinot attribue une signification phylogénétique sont: 1) la forme des pleopodes mâles; 2) la structure des régions antennulaire, antenneaire, orbitaire et buccale; 3) la forme du plastron sternal.

Cet éclatement du genre Micropanope et les regroupements d'espèces au sein de plusieurs genres nous intéressent particulièrement dans le cas du genre Nanoplax dont l'espèce-type, Panopeus xanthifrons A. Milne Edwards, 1880, choisie par Guinot (1967: 362), avait été incorporée par Rathbun (1930: 442) dans le genre Microanope. Tout en soulignant l'existence d'un certain degré de parenté entre le genre Nanoplax (qui contient donc à l'origine une seule espèce, N. xanthiformis) et le genre Pseudorhombila H. Milne Edwards, notamment au niveau des pleopodes mâles, des pinces, du plastron sternal et de la structure des régions orbitaire et buccale, Guinot (1967) considère ce dernier comme étant à un stade évolutif déjà plus avancé, plus franchement caméléope.

Au cours d'échantillonnages effectués dans le Golfe de Californie, Mexique, nous avons pu obtenir 3 exemplaires de P. xanthifrons, y-compris un très beau spécimen mâle de grande taille (17.0x24.5 mm). Ce matériel nous a permis de compléter les observations faites par D. Guinot et la description de l'espèce de
J.S. Garth en comparant ce mâle: 1) avec l'holotype de Nanoplax xanthiformis, l'espèce-type du genre (MP-B9584); 2) à des spécimens mâles de Pseudorhombila (P. octodentata, MP-B 10250; P. quadridentata, MP-B 10251; P. guinotae, MP-B 12563); 3) aux illustrations de Guinot (1967; 1969b); et 4) à la description récente de P. guinotae par Hernandez-Aguilera (1982). (MP-B et EMU = Collections du Muséum de Paris et de la Station Mazatlán, UNAM).

Pseudorhombila xanthiformis Garth, 1940

Nanoplax garthi Guinot, 1969c: 705 (nom. nov. pro *Nanoplax xanthiformis* (Garth, 1940), non *Nanoplax xanthiformis* (A. Milne Edwards, 1880)).

Matériel examiné. — Croisière CORTES 1, station 50, 12 mai 1982, 25°43′30″ N 109°34′ W, au large de l'embouchure du Rio Fuerte, Sinaloa, Mexique, chalutage à 89-93 m, limon sableux: 1 ♀ 9.7x13.6 mm (MP-B, ex EMU-2637); 1 ♀ 12.7x17.0 mm (EMU-2637A). — Croisière CORTES 1, station 51, 12 mai 1982, 25°39′30″ N 109°31′ W, au large de l'embouchure du Rio Fuerte, Sinaloa, Mexique, chalutage à 36 m, limon sableux: 1 ♂ 17.0x24.5 mm (EMU-2637B).

Remarques. — Suite à l'examen de deux syntypes de *P. quadridentata* et de l'holotype de *P. octodentata*, Guinot (1969c: 704) souligne les caractères typiquement catamétopes de ces deux espèces, “avec une partie du St.8 visible au niveau du 2e segment abdominal et réuni au St.7” (St = sternite) (fig. 1A, *P. octodentata*; voir aussi Guinot, 1969c, fig. 113). Cet état catamétopo au niveau de l'organisation sternum-abdomen, observé par ailleurs chez *P. guinotae*, s'accompagne, chez les deux espèces, de modifications au niveau des pl. 1 (fort pénis abrité dans une gaine et orifice mâle déporté en position sternale; tide Guinot, 1969b). Chez *Nanoplax*, le stade évolutif est plus précocé (Guinot, 1967: 362), et on retrouve seulement une très petite portion du St.8 visible entre le 3e et le 2e segment abdominal. Ce dernier s'appuie encore contre la coxa des 5e péréiopodes sur environ la moitié de sa largeur (fig. 1B, *Nanoplax xanthiformis*), tandis que les portions visibles des St.7 et St.8 sont très éloignées l'une de l'autre et sont séparées par l'extrémité latérale du 3e segment abdominal. Chez *Pseudorhombila xanthiformis*, enfin, on observe un stade intermédiaire: 1e 2e segment abdominal est plus étroit, et ne touche plus la coxa 5 dont il est séparé par la portion visible du St.8 (fig. 1C), nettement plus grande que dans le cas de *Nanoplax* mais encore insuffisamment dégagée que pour apparaître réunie à l'épisternite 7 (comme c'est le cas chez les trois autres *Pseudorhombila*). En soulevant l'abdomen, il est cependant possible d'observer que la portion visible du St.8 se prolonge un peu sous le 3e segment abdominal en direction du St.7, un peu comme chez *Carcinoplax longimanus* (De Haan, 1835) (voir Guinot, 1969a: 524, fig. 61).

Chez *Nanoplax xanthiformis*, tout comme chez *P. quadridentata*, *P. octodentata* et *P. guinotae*, la carapace est nettement plus large que longue. Chez *Nanoplax*, cependant, on observe la fusion des deux premières dents, la première (la dent exorbitaire) étant séparée de la 2e par une échancrure peu profonde, l'ensemble
Fig. 1. Relation sternum-abdomen au niveau des sternites 7 et 8. A, Pseudorhombila octodentata Rathbun, 1906, σ 30.6x41.1 mm (MP-B 10250); B, Nanooplax xanthiformis A. Milne Edwards, 1880, σ 8.6x12.0 mm (holotype, MP-B 9584); C, Pseudorhombila xanthiformis Garth, 1940, σ 17.0x24.5 mm (EMU-2639B).
Fig. 2. Vue antérodorsale de la carapace. A, *Pseudorhombila octodentata* Rathbun, 1906, cr 30.6×41.1 mm (MP-B 10230); B, *Nanoplex xanthiformis* A. Milne Edwards, 1880, cr 8.6×12.0 mm (holotype, MP-B 9584); C, *Pseudorhombila xanthiformis* Garth, 1940, cr 17.0×24.5 mm (EMU-26396). Echelle 5.0 mm.
Fig. 3. Pléopode I (pl. I) chez Pseudorhombila et Nanoplax. A, Pseudorhombila guinotae Hernández-Aguilera, 1982, ♂ 29.0×38.3 mm (holotype); B, P. guinotae, extrémité du pl 1, ♂ 23.3×30.7 mm (paratype, MP-B 12363); C, P. quadridentata (Latreille, 1828), extrémité du pl 1, ♂ 35.6×30.0 mm (synotype, MP-B 10251); D, P. octodentata Rathbun, 1906, extrémité du pl 1, ♂ 30.6×41.4 mm (MP-B 10250); E, Nanoplax xanthiformis A. Milne Edwards, 1880, ♂ 8.6×12.0 mm (holotype, MP-B 9584); F, id., extrémité. (A d’après Hernández-Aguilera, 1982; B-C d’après Guinot, 1969c; E, d’après Guinot, non publié).
des deux dents présentant une largeur environ égale à celle de la 3e. Les 3e et 4e dents sont fortes, plutôt spiniformes tandis que la 5e est petite et pointue (fig. 2B). L'orbite est assez allongée, un peu inclinée vers l’arrière et les lobes frontaux sont légèrement convexes (fig. 2B). Chez *P. xanthiformis* (fig. 2C), tout comme chez *P. octodentata* (fig. 2A), *P. quadridentata* (cf. Guinot, 1969b: pl. 3 fig. 1) et *P. guinotae* (cf. Hernandez-Aguiera, 1982: fig. 1B), on observe un long espace granuleux séparant la petite dent exorbitaire de la 2e, réduite à un tubercule granuleux. Les deux dents suivantes sont fortes, subconiques, et la 5e est réduite. La présence de cet espace granuleux entre les 2 premières dents est typique du genre *Pseudohombila* et se retrouve aussi chez *Oediplus Rathbun, 1893*, un genre monospécifique auquel Garth (1940: 88) avait un moment voulu rattacher sa *Pseudohombila xanthiformis*. L’examen des pléopodes de spécimens mâles de *Oediplus granulatus* Rathbun, 1906, récoltés dans le Golfe de Californie, nous permet d’ailleurs d’écarter définitivement cette hypothèse, ceux-ci étant fondamentalement distinct des pléopodes de *P. xanthiformis*.

Les espèces de *Pseudohombila* sont aussi plus convexes d’avant en arrière, le front est droit, alors qu’il est plutôt biconvexe chez *Nanoplax* et les échancreurs entre les dents antéro-latérales sont nettement moins marquées, moins profondes chez *Pseudohombila*.

En ce qui concerne les pléopodes sexuels du mâle, les trois espèces de *Pseudohombila* de l’Atlantique (*octodentata, quadridentata* et *guinotae*) possèdent un premier pléopode (p1) puissant, épais et torsadé, avec de nombreux tubercules disposés suivant le mouvement de torsion. L’extrémité est recourbée et l’apex se termine par un lobe enroulé vers l’extérieur et près duquel sont implantés de longues spinules (fig. 3A-D). Le p1 de *Nanoplax xanthiformis*, par contre, s’il présente lui aussi une torsion importante de l’axe longitudinal, est plus étalé, moins tuberculé dans sa moitié inférieure et se termine par un lobe allongé, presque vertical, non enroulé (fig. 3E, F). Dans le cas de *Pseudohombila xanthiformis*, on retrouve un p1 puissant et torsadé, fortement épineux et termine par un lobe enroulé bien développé, disposé un peu obliquement sur l’axe du pléopode et surplombant un bouquet de fortes spinules (fig. 4). L’extrémité est cependant moins recourbée que chez les autres espèces du genre, où l’on observe une terminaison en forme de bec-de-canne (fig. 3B, C, D).

Sur la base de l’examen d’exemplaires mâles, dans l’ensemble (carapace, dents antéro-latérales, plastron sternal, pléopodes) les caractères morphologiques de *P. xanthiformis* l’éloignent plutôt de *Nanoplax* et indiquent une affinité plus forte avec le genre *Pseudohombila*, tel que l’avait présenté Garth (1940). En supprimant donc l’homonymie secondaire entre *Nanoplax xanthiformis* (Garth, 1940) et *Nanoplax xanthiformis* (A. Milne Edwards, 1880), homonymie trouvant son origine dans l’étude de Guinot (1969c), postérieure à 1960, et sur la base de laquelle avait été établie *Nanoplax garthi* en substitution du plus récent homonyme (i.e. celui de Garth, 1940), “xanthiformis Garth, 1940” doit donc être rétabli comme le nom valide dans le genre *Pseudohombila*.
Fig. 4. Pléopode 1 de *Pseudorhombula xanthiformis* Garth, 1940, ♂ 17.0×24.5 mm (EMU-2639B). Vues latérales (A, B) et ventrales (C, D) (SCAN).
REMERCIEMENTS

LITTÉRATURE CITÉE

